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Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning

Yarin Gal
Zoubin Ghahramani
University of Cambridge

Abstract

Deep learning wols have gained tremendous at-
tention in applied machine leaming. However
such wols for regression and classification do
not capture model uncertainty.  In compari-
son, Bayesion models offer & mafhenatically
grounded framework to reason about model un-
certainty, but usually come with a prohibitive
computational cost. In this paper we develop a
new theoretical framework casting dropout train-
ing in deep neural networks (NNs) as approxi-
mate Bayesian inference in deep Gaussian pro-
cesses. A direct result of this theory gives us
tools o model uncertainty with dropout NNs —
extracting information from existing models that
has been thrown away so far  This mitigates
the problem of representing uncertainty in deep
learning without sacrificing either computational
complexity or test accuracy. We perform an ex-
tensive study of the properties of dropout’s un-
certainty. Various network architectures and non-
linearities are assessed on tasks of regression
and classification, using MNIST as an example.
We show a considerable improvement in predic-
tive log-likelihood and RMSE compared to ex-
isting state-of-the-art methods. and finish by us-
ing dropout’s uncertainty in deep reinforcement
learning.

1. Introduction

Dieep learning has attracted tremendous attention from re-
searchers in fields such as physics, biology, and manufac-
turing, to name a few (Baldi et al., 2014; Anjos et al., 2015;
Bergmann et al., 2014). Tools such as neural networks
(NNs), dropout, convolutional newral networks (convnets).
and others are used extensively. However, these are fields in
which representing model uncertainty is of crucial impor-
tance (Krzywinski & Altman, 2013; Ghahramani, 2015)_

Proveedings of the 337 International Conference on Machine
Leaming, New York, NY, USA, 2016, JMLR: W&CP volume
48, Copyright 2016 by the autharis).

YG2T9E CAM.AC.UK
2G201 @ CAM.AC.UK

With the recent shift in many of these fields towards the use
of Bayesian uncertainty (Herzog & Ostwald, 2013; Trafi-
Nuzzo, 2014), new needs arise from

deep leaming wo

Standard deep learning tools for regression and clas
tion do not capture model uncertainty. In classification,
predictive probabilities obtained at the end of the pipeline
(the softmax output} are often erroneously interpreted as
model confidence. A model can be uncertain in its predic-
tions even with a high softmax output (fig. 1). Passing a
point estimate of a function (solid line 1a) through a sofi-
max (solid line 1b) results in extrapolations with unjustified
high confidence for points far from the training data
example would be classified as class 1 with probability 1.
However, passing the distribution (shaded area 1a) through
a softmax (shaded area 1b) better reflects classification un-
certainty far from the training data.

for

Model uncertainty is indispensable for the deep leaming
practitioner as well. With model confidence at hand we can
treat uncertain inputs and special cases explicitly. For ex-
ample, in the case of classification, a model might return a
result with high uncertainty. In this case we might decide
to pass the input 10 a human for classification. This can
happen in a post office. sorting letters according to their zip
code, or in a nuclear power plant with a system responsi-
ble for critical infrastructure (Linda et al., 2009). Uncer-
tainty is important in reinforcement learning (RL) as well
(Szepesviri, 2010). With inty i i
can decide when to exploit and when to explore its envi-
ronment. Recent advances in RL have made use of NNs for
Q-value function approximation. These are functions that
estimate the quality of different actions an agent can take.
Epsilon greedy search is often used where the agent selects
its best action with some probability and explores other-
wise. With uncertainty estimates over the agent's Q-value
function, technigues such as Thompson sampling (Thomp-
som, 1933) can be used to leam much faster.

an agent

Bayesian probability theory offers us mathematically
grounded tools to reason about model uncertainty. but these
usually come with a prohibitive computational cost. It is
perhaps surprising then that it is possible to cast recent

8)
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% Frequentist : Standard Deep Learning / Deterministic Deep Learning

S & SUSH A 0] CHSM S SUSH 01 740 £

L—

M, M, M,
X1
\ - T=1 T=2 T=3 - T=
¢ >< \
y 48 48 48 48
e % /
x4/

Q.. Daota Mining
ob Quallity Anailytics



Il Bayesian-based Approach

Frequentist way & Bayesian way

% Bayesian : Bayesian Deep learning / Stochastic Deep Learning
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Frequentist way & Bayesian way

% Bayesian : Bayesian Deep learning / Stochastic Deep Learning

. Bk S EQUs} Qlad Zho|| sl A= CHE 0= 40| ==

T=1 T=2 T=3 - T=T

High variance

SN

N A

RS AT AN 9 46 2 .. 5 7 ~N(50,102)
A VAN

X

Q.. Daota Mining
ob Quallity Anailytics



Il Bayesian-based Approach

Dropout as Bayesian Approximation

% Bayesian : Bayesian Deep learning / Stochastic Deep Learning
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Dropout as Bayesian Approximation

% Bayesian : Bayesian Deep learning / Stochastic Deep Learning
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Dropout as Bayesian Approximation

< Loss function ‘82| (Appendix &)

Minimize KL(qg(W)||lp(W|X,Y))

= Maximize ELBO
N

= Minimize = )" [ ag(W)in (p(yil ™ Cxe))dw + KL(aa (W) o))
i=1

N
= Minimize -7 > In((i|f9 (x))) + KL(go (W) [p(W))

IES

_ Minimize —— 3 I Af998 (x) + A11IM1 1% + A5]|M3 1% + A3]|b)|? (0,8) = wy;
= Minimize = ) In(@ilf9"% (x:) + 441[IM4]l" + 22 [[M2]|" + 45]| bl g(0,€) = wy;
i€S
Regression: MSE
Classification: Softmax cross entropy
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% Bayesian : Bayesian Deep learning / Stochastic Deep Learning

ol

+ MC dropouth weight?l] L2 reqularzaion EEA|= 202 S8t Huiele S

M Ms

M,

S

B0 o @A

AR /AN o Variational inference
R VAN

7228

MC dropout with L2 regularization

A\

Kullback-Leibler Divergence
(F =HET X2 XI0IZ AlLh

Posterior
qo(W)* = argmin KL(qgg(W)||lp(W|X,Y))

1€ Q  \Ariational distribution
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Il Bayesian-based Approach

Dropout as Bayesian Approximation

% Dropout

- SISOO|E| Ciet @IS X5t/ 2ot Crefet st B-ESO| U=
*  Dropout2 HEHNQ 22 Friet PO = HIXOICH 422 L& HES &GS
o O|lY, dropout= &2 H|E2(1 — p)= AFBAPLE9]
Standard Neural Network After applying dropout

xl xl

X9 xZ
y

x4 x4-

Q.. Daota Mining
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p - keep probability
1 — p : dropout probability

<




Il Bayesian-based Approach

Dropout as Bayesian Approximation

% Dropout
«  Dropout2 F=(nference / test) THA|0f| A= L2 0| E

=
=
»  1ZHQI TEI0[H| 7tSK| pE &0t ZFHL 0= A > Ait= l"é!’%*

Training Phase Testing Phase
p - keep probability
X1 X1 1 — p : dropout probability
Z4 Z
Xy W1 X, pw,
Z; wp Y Z; pwy o Y
@ W3 < pWs3
Z3 Z3
X4 X4
y=z3w; + T Z3ws Y = pzywq + pzywy + pzzws
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Il Bayesian-based Approach

Dropout as Bayesian Approximation

% Monte Carlo Dropout (MC dropout)
«  MC dropout2 FE(inference / test)THA|0|A = dropout M-E5H0{ Li2H0|H 2FEX O 2 R A E (Stochastic)

- O =2 istochastic forward pass, T)BICH 0ot Of|S0] =l > All= =&

Training Phase Testing Phase (T'=1)
p - keep probability
X1 X1 1 — p : dropout probability
Z1 Z1
X5 Wy X, Wy
Z; w, ¥ Zy Wy Y
X3 W, X3 Wi
Z3 Z3
X4 X4
y=2z;w; + + Z3ws Vi = + Z,W, + Z3w;
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Il Bayesian-based Approach

Dropout as Bayesian Approximation

% Monte Carlo Dropout (MC dropout)
«  MC dropout2 FE(inference / test)THA|0|A = dropout M-E5H0{ Li2H0|H 2FEX O 2 R A E (Stochastic)

- O =2 istochastic forward pass, T)BICH 0ot Of|S0] =l > All= =&

Training Phase Testing Phase (T'=2)
p - keep probability
X1 X1 1 — p : dropout probability
Z1 Z1
X5 Wy X, Wy
Z; w, ¥ Zy Wy Y
X3 W, X3 Wa
Z3 Z3
X4 X4
y=2zyw; + + Z3w; Y, = zZwy + Z,w, +
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Il Bayesian-based Approach

Dropout as Bayesian Approximation

% Monte Carlo Dropout (MC dropout)
«  MC dropout2 FE(inference / test)THA|0|A = dropout M-E5H0{ Li2H0|H 2FEX O 2 R A E (Stochastic)

- O =2 istochastic forward pass, T)BICH 0ot Of|S0] =l > All= =&

Training Phase Testing Phase (T'=3)
p - keep probability
X1 X1 1 — p : dropout probability
Z1 A
X5 wq X, Wy
Z; wy Y Z; wy Y
X3 We X3 Wa
Z3 Z3
X4 X4
y=2zyw; + + Z3w; Y3 = zyw;p + +
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Il Bayesian-based Approach

Dropout as Bayesian Approximation

% Monte Carlo Dropout (MC dropout)
«  MC dropout2 FE(inference / test)THA|0|A = dropout M-E5H0{ Li2H0|H 2FEX O 2 R A E (Stochastic)

- O =2 istochastic forward pass, T)BICH 0ot Of|S0] =l > All= =&

Testing Phase Testing Phase (T'=3)
p - keep probability
Vo = + Z,Wy + ZzWy 1 1 — p : dropout probability
A
Vo = ZyWq + Zowy + X7 W1
Zy W y
Y3 = zZw;p + + oV @
X3
W3
Z3
yr = T ZWy + Z3Ws X4
Y3 = zZywy + +
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Jlll Bayesian-based Approach

Dropout as Bayesian Approximation

% Monte Carlo Dropout (MC dropout)
MC dropout2 F=(inference / test) THAINM = dropout X-2510] Ti2I0|E ZEX O Z 2 EAE (Stochastic)

. O§&H =2 Mlstochastic forward pass, T)OICH O[S 0F0| £ > Zit= 2EX

to+J

. After T stochastic forward passes
Testing Phase

1
E(y) = 72 Ve Prediction
yl —+ ZyWy + Z3W3 t=1

Y, = Z4Wq + Zo,w, + _ 1 ~ T o
2 = 211 T 220 Var(y) ~ t7'Ip +;ZytTyt—E(y)TE(y)

Y3 = zZ1Wq + +

pl?

v = 2N piprobability of units not being dropped

Yr = T Z;W, + Z3ws L .
Epistemic uncertainty
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Il Bayesian-based Approach

Bayesian Neural Networks for Computer Vision

< NeurlPS 2017 (22'd 1E& 7|E 24037 218)
Uncertainty &2t M22+ (Epistemic uncertainty, Aleatoric uncertainty)

«  Computer vision tasks0l H-&

.ﬁ
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Quallity Anailytics

What Unecertainties Do We Need in Bayesian Deep
Learning for Computer Vision?

Carin Gal
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Abstract Hs 2lE =
of uncertainly one can model. Alemioric uncertanly
| e dheerations. O the ot b, i e SegNet: A deep convolutional encoder-decoder architecturs for scene segmentation 10632 2017
snally it has been diffieult 1o model epistensic V Badrinarayanan, A Kendall, R Cipolla
_ o, but with new sian deep leaming tools this IEEE transactions on pattern analysis and machine intelligence
is now possible. We study the benefits of mod pistemic vs. aleatonic -
centainty in Bay deep leaming models for vision txsks. For this we present X X X
a Bayestan deep learning framework combining input-dependent aleatoric uncer- What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 2392 2017
rainty together with epistemsc uncertsinty. We study models under the framework AKendall ¥ Gal
wilh per-pixel semanbic segmentation and depth regression lasks. Further, our ! : . .
explicil uncertainty formulation leads 1o new boss functions for these tasks, which Advances in Neural Information Processing Systems
can be interpreted 5 leamed aftenuation. This mukes the loss more robust 1o noisy
ey ot mes stae-oftherart feaults o0 segiesiarion nd depeh regreasion PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization 1552 2015
benchmarks. - -
AKendall, M Grimes, R Cipolla
1 Introduction Proceedings of the IEEE International Conference on Computer Vision
epresentations which can Multi-task learning using uncertainty to weigh losses for scene geometry and semantics 1408 2018
mal d.‘.;u [u:n]aﬂm\ ull ulu[puhnw e : mml;\h.‘;‘hkzl h]!::].l\; .m:lmnu AKendall, Y Gal, R Cipolla
curate. which is mol always the case, In fwo recent examples this has had disasirous con- o - . "
16 tftaliy fromm an asisted diving sysiem, caused by the Proceedings of the IEEE Conf. on Computer Vision and Pattern Recogpnition
e side of a trailer for baght sky
dl_\mn_m:I’_““I';;‘;,‘jtﬂ‘;'[:;’;:::‘h“'n::' Bayesian SegNet' Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures 881 2017
of uncenainty o their erronecus predictions, then the system meay have been able 1o make mm for Scene Understanding.
decisions und likely svoid disaster. AKendall, V Badrinarayanan, R Cipolla
Quantifying uncertainty in compater vision applications can be largely divided ino regression set- Proceedings of the British Machine Vision Conference
tings cuch as depth regression, and clsssification settings such as sencmtic segmentstion. Existing
approaches 10 model uncertainty in such setlings in compuler vision include particle fillering and
condi drm-lm-luldm 4). Howeves many i nu:“‘l“,.‘:::‘;.:?{i’a?"‘:;“.i End-to-End Learning of Geometry and Context for Deep Stereo Regression 807 2017
unce: 0 regretsion m:';, for AKendall, H Martirosyan, S Dasgupta, P Henry, R Kennedy, A Bachrach, ...
example, and deep learning classification models often give normalised score vectors, which do nat Proceedings of the |EEE International Conference on Computer Vision
mecessarily capture model uncenainty. For both setlings uncerainty can be captured with Bayesian
deep learnimg approaches - which offer a peactical Framework for understanding uncertainty with y
teep learning models [6]. Geometric loss functions for camera pose regression with deep learning 529 2017

I Bayesian mideling. there are two miin lypes of uncertainty one can model [7). Aleatoric uncer-
Laintly captures noise inberent in the observations. This could be for example sensor noise or motion
noise, resulling in uncertainty which cannot be reduced even if more data were 1o be collected. On
the other hand, epistemic uncertaintly acoounts for unceninly in the model parameters - unceramty

3151 Canference on Neunal Information Processing Sysiems (NIPS 2017), Long Beach, CA, USA.

Kendall, Alex, and Yarin Gal. "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?." NIPS. 2017.

AKendall, R Cipolla
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition
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Jll Introduction

Types of Uncertainty

% Epistemic uncertainty (model uncertainty)
« 0| G|O|E{0f| CHof HO-| XetSHA| T2l =Ko ChHoll 2E2= T
« O|O|E2] ofH SH S SI&Sk=X0f o 2= T
- O B2 Ho[E7 e&5EICHH = 4= UAS, reducible uncertainty

“HiE2 AlDE S HE”--£ - H| § YHF, ABFY RO mZa}

0] ABC #&2| MEX| HIETQI KGO-TV
At ALt X|hel 9F et HiE2te| XS Cl
SO XL HIEEt| AlE 2T FFH0| L2||= AEoA
F2|tHS So|2hot S =0, 670 W AtnE QF A&Ao2 =

I Tr
2 o
>t
ou
x
[l
i)

N/ M H H 20| ACk= A0|Ck 0|0 YA EllE2k= Xt 201610 LAlivt E&fj 22| S5
** Aleatorlc u ncertalnty (data u ncertalnty) Ataof| chisl “xXtS3F@ Kt2ro] A2 Shofl 2l E2fY2 S dhe2 2Ol

FEMDES WP D AL §elS Wl ot Uk

«  GO[H0f LRzl L=O|=2 I3} Of3ffSHA| Zolk= 8=

(e.g. measurement noise, randomness inherent)
- O H2OOH7I 2E5EH2te S 5= 815, ireducible uncertainty

- SEEEEEROHEYEFUS

Q.. Data Mining Kendall, A., & Gal, Y. (2017). What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?. Advances in Neural
e®® Quoalty Analytics Information Processing Systems, 30, 5574-5584.




Jll Introduction

Types of Uncertainty Uncertainty
|

% Aleatoric uncertainty (data uncertainty) | |
o L = Olag el o) Bi5l= X . . .
H|O|E40]| LHAHE! lLO|== Q8| O[SHSHX| o= He Epistemic —  Aleatoric

(e.g. measurement noise, randomness inherent)
- * Model uncertainty + Data uncertainty
- O B2 00|57t etak|Hete &Y o= 815, irreducible uncertain
-I g -” | -I |-_' = | -I |- =EET e ty * Reducible uncertainty * Imeducible uncertainty
. SYPUES FOHEALUS
| Homoscedastic
uncertainty
<+ Homoscedastic uncertainty PO
T uncertainty

«  AME LRE 2E X0 CfellM S JriE XE

average Inss. 0 2BE4SBIL150637) sverage loss: 0.4844874260257135

% Heteroscedastic uncertainty M| ’
N . : P | .- TN
+ MECHE U 40l tHoM THE 242 XI'd, input-dependent uncertainty | \\J T ,w/ R‘&LM»&'WL

TR i :

- HHESHH 3t k= R outlier?| XN HE 28 5= AU
Homoscedastic uncertainty ~ Heteroscedastic uncertainty

Q.. Data Mining Kendall, A., & Gal, Y. (2017). What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?. Advances in Neural
e®® Quoalty Analytics Information Processing Systems, 30, 5574-5584.




Uncertainty

- BayeSia n B ba Sed Ap p roa C h Epistemic —  Aleatoric

BayeSian Neural NetWOI’kS fOI‘ Computer ViSion *  Model uncertainty + Data uncertainty
* Reducible uncertainty + Irreducible uncertainty
<+ Density Network Architecture My
«  MC dropoutT+Z=2t FASHH, aleatoric uncertaintyS 8 5}H7| I8t output node?t =7+l HEH — iy
Standard Neural Network Density Network
J/’\tw(x)
Yw (x)
~2
O W(x)
7 (x) = 9] Wol _ 1 22
f (.X') - [y tr Ot ]

We~q* (W)
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Il Bayesian-based Approach

Bayesian Neural Networks for Computer Vision

% Density Network Architecture
«  Loss attenuation: heteroscedastic uncertainty 2t&s10]
o
o

== d0[ 2 Y0 CHOHAE lossOfl Beks HA| g

Epistemic uncertainty

Ve~ (X
MC dropout Ve (¥)

with L2 regularization .
Ot W(x)

Aleatoric uncertainty

f7(x) = (7, 6:°]
We~q* (W)

Q.. Daota Mining
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*  Model uncertainty
* Reducible uncertainty

After T stochastic forward passes

T Prediction
E(y*) = 7 Ve
t=1
T T
* 1 ~ 2 1
PRESTRES A Eb e
t=1 t=1

Total uncertainty ~ Epistemic uncertainty

Uncertainty

Epistemic —  Aleatoric

+ Data uncertainty
+ Irreducible uncertainty

Homoscedastic
uncertainty

Heteroscedastic
uncertainty

2 1 .
Ve +TZ 73
t=1

Aleatoric uncertainty




Il Bayesian-based Approach

Bayesian Neural Networks for Computer Vision

% Density Network Architecture
«  Loss attenuation: heteroscedastic uncertainty 2&st0] HS
«  S2HE0| 2 Y| CHoHA = lossOfl ks HA| HHE

Epistemic uncertainty

Ve~ (X
MC dropout Ve (¥)

with L2 regularization .
Ot W(x)

Aleatoric uncertainty

f7(x) = (7, 6:°]
We~q* (W)
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Uncertainty

Epistemic —  Aleatoric

+ Data uncertainty
+ Irreducible uncertainty

*  Model uncertainty
* Reducible uncertainty

Homoscedastic
uncertainty

Heteroscedastic
uncertainty

Heteroscedastic uncertainty as learned loss attenuation

MSE
Lown (6) = sz 5 i = FGI +50ga )

Residual's weight Uncertainty regularization

* Residual’s weight
Aleatoric heteroscedastic uncertainty”t & 0|Z 4£01| CHHA =
loss(residual)S XA EtH

* Uncertainty regularization

Aleatoric uncertainty” | 2= H|O|E{0]| TS FoH5| HX|= AE M2




Il Bayesian-based Approach

Bayesian Neural Networks for Computer Vision

% Density Network Architecture
« Loss attenuation: heteroscedastic uncertainty 24510} LS

o

o

. EEAHO| 2 U0l CIBIAE lossOfl @S A

Epistemic uncertainty

Ve~ (X
MC dropout Ve (¥)

with L2 regularization .
Ot W(x)

Aleatoric uncertainty

f7(x) = (7, 6:°]
We~q* (W)
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Uncertainty

Epistemic —  Aleatoric

+ Data uncertainty
+ Irreducible uncertainty

*  Model uncertainty
* Reducible uncertainty

Homoscedastic
uncertainty

Heteroscedastic
uncertainty

Heteroscedastic uncertainty as learned loss attenuation

1 & 1 MSE 1
Lown (6) = sz Goyz i~ FGOI 45 loga (x)?
i=1

Residual's weight Uncertainty regularization

* Residual’s weight
Aleatoric heteroscedastic uncertainty”t & 0|Z 4£01| CHHA =

loss(residual)E XA EtH

« £O|=7} 2 H|O|H (&2 heteroscedastic uncertainty” | GilZ-=! 200

CHSHA = lossOfl ZA| HHS




Il Bayesian-based Approach

Bayesian Neural Networks for Computer Vision

% Density Network Architecture
« Loss attenuation: heteroscedastic uncertainty 24510} LS

o

o

. EEAHO| 2 U0l CIBIAE lossOfl @S A

Epistemic uncertainty

Ve~ (X
MC dropout Ve (¥)

with L2 regularization .
Ot W(x)

Aleatoric uncertainty

f7(x) = (7, 6:°]
We~q* (W)
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Uncertainty

Epistemic —  Aleatoric

+ Data uncertainty
+ Irreducible uncertainty

*  Model uncertainty
* Reducible uncertainty

Homoscedastic
uncertainty

Heteroscedastic
uncertainty

Heteroscedastic uncertainty as learned loss attenuation

1 & 1 MSE 1
Lown (6) = NZg Goyz i~ FGOI 45 loga (x)?
i=1

Residual's weight Uncertainty regularization

* Residual’s weight
Aleatoric heteroscedastic uncertainty”t & 0|Z 4£01| CHHA =

loss(residual)E XA EtH

« LO|=7} N2 H|0|E{(R2 heteroscedastic uncertainty” OISE! 250

CHSHAM = lossOfl 2A| EHS




Il Bayesian-based Approach

Bayesian Neural Networks for Computer Vision

< Density Network Architecture for classification
o T OIS0 dassificationd] HESIEE $AS HE|SIIA} S A 27 US

« 2=p(1-pP)=p —p* 22 =L 7 USS ZESI0 B2l nodeZ T=Z0H| HE
Aleatoric uncertainty

After T stochastic forward passes

T T

* 1 ~ 2 1
Var(y) = = ) 9: - —Z ;Z
t=1

D1y (%) t=1 t=1
MC dropout v
with L2 regularization Total uncertainty ~ Epistemic uncertainty ~ Aleatoric uncertainty
Doy ()
T 2 T
* 2 1 A 1 A N 2
. Var(y*) = _Zptl 7 Pt,i +sztl_ptl
Wi — [A — — —
fre(x) = [D¢i] t=1 t=1 t=1
Wt~q*(W) Total uncertainty ~ Epistemic uncertainty ~ Aleatoric uncertainty
Q.. Data Mining Deodato, Giacomo, Christopher Ball, and Xian Zhang. "Bayesian neural networks for cellular image classification and uncertainty =
e®® Quality Analytics analysis." bioRxiv (2020): 824862.




Il Bayesian-based Approach

N

Bayesian Neural Networks for Computer Vision

<+ Density Network Architecture for
o 2% ARLE0 dassificationdl| Xets

+ F=p(1-pP=p-p* 2LEEFL T
Aleatoric uncertainty

==

MC dropout
with L2 regularization

FVe(x) = [Pe]
We~q* (W)

Daota Mining

Quality Analytics analysis." bioRxiv (2020): 824862.

classification

= A= Gelofidk} ot A=t RS

OIQQ
A =

=t
=

Deodato, Giacomo, Christopher Ball, and Xian Zhang.

8510 HEO| nodeZ T-E5HX| %S

After T stochastic forward passes

oive., (1
o= 1350 (135
t=1

t=1

Total uncertainty ~ Epistemic uncertainty

Var(y*) =

Total uncertainty ~ Epistemic uncertainty

"Bayesian neural networks for cellular image classification and uncertainty

T
Y
T

t=1

Aleatoric uncertainty

T T
IcC. ., I,
Tz(pt‘i_pt'i) + TZ Dti — Dt

t=1 t=1

Aleatoric uncertainty




Uncertainty

- BayeSia n B ba Sed Ap p roa C h Epistemic —  Aleatoric

.ﬁ

*  Model uncertainty + Data uncertainty

Bayesian Neural Networks for Computer Vision Results
* Reducible uncertainty + Irreducible uncertainty

< Computer vision tasks

Daota Mining
Quallity Anailytics

Homoscedastic
uncertainty

Heteroscedastic
uncertainty

» Depth regression (regression task)

« Semantic segmentation (classification task)

Depth regression Semantic segmentation

Original image




Uncertainty

- BayeSia n B ba Sed Ap p roa C h Epistemic —  Aleatoric

Bayesian Neural Networks for Computer Vision Results + Modd uncertiny eR—"
* Reducible uncertainty + Irreducible uncertainty

. Homoscedastic

% Depth regression T ey

L Heteroscedastic

uncertainty

- HI52[0f| CHH 0| Z0| high aleatoric uncertainty

. 0| =0] E2I £20 high epistemic uncertainty

Input Image  Ground Truth  Depth Aleatoric Epistemic
Regression Uncertainty ~ Uncertainty
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Uncert Quantification

|S0f| CHet = =S

ayesian-based Approach Ensemble-based Approach GP-based Approach

mple and Principled Uncertainty Estimation with
Deterministic Deep Learning via Distance Awareness

Simple and Scalable Predictive Une
Estimation using Deep Ensembles

Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning

Do We Need in Bayesian Deep
ing for Computer Visiol
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Jlll Ensemble-based Approach

Simple and Scalable Deep Ensembles
< NeurlPS 2017 (22'd 18 7|& 225721 218)
_I

« 7|ECS|BNNQ| 4% 22 27t oI A rEkz

 Ensemble= O|85t0{ ZHEISEA| uncertainty =22 2

L

rl'l

Balaji Lakshminarayanan
Simple gn(l S‘fcalnh!e Predictive Uncertainty Staff Research Scientist at Google Brain
Estimation using Deep Ensembles google.com@| 0|2 SOl - ST 0IX

oE -

IMachine Learning

Balaji Lakshminarayanan . l\‘kl-:\i:::'d;r Pritzel Charles Blundell httD/ /WWWQ aTSbV.UCI.aC.U k/” bal ajj[

{balajiln,apritzel,cblundell}@google . com

A g A
Abstract
Simple and scalable predictive uncertainty estimation using deep ensembles 2257 2017

Dezp neural networks (NNs) are powerdul black box predictors that have recently
spect

B Laks n, A Pritzel, C Blunc

r Systems, 63
estimating predictive uncertainty: howe
tions to the training procedure and are mmpumum o

standard (non-Bayesian) NNs. We propose an alierna e Clinically applicable deep learning for diagnosis and referral in retinal disease 1283 2018 .

is simple to implement. readily parallelizable, requires v perparameler J De Fauw, JR Ledsam, B Romera-Paredes, 5 Nikolov, N Tomaseyv, eur utorla S
high quality predictive uncertainty estimates. Through a series ine 134241
of experiments on classifi sion benchmarks, we demonstrate that

our method produces well-calibrated uncenainty estimates which a i
better than approximate Bayesian NNs. To assess robustness to dat Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Un
evaluate the predi uncertainty on test examples from known and unknown

distributions, and show that our method is able 1o express higher uncertainty on Shift

out-of-distribution examples. We demonstrate the scalability of our method by ¥ O
evaluating predictive uncertainty estimates on ImageNet. Neurl

1 Introduction ﬁc;rmahzmg I::\ows far Probamhsﬂf .F\.gode\mg Snd Inference Uncertainty in Deep Learning

Deep neursl networks (NNs) have achieved f-the-ant performance on a wide variety of machine 1
i aly popular in domains such as compute .
processing [42], and bioinformatics 2, 61]. [

ozin, JV Dillon

a, E Fertig, J Ren, Z Nado, D Sculley
g

[32], speech recognition [2: 2 ” x s
impressive accuracies in supervised learning benchmarks, NNs are poor al quantify Do Deep Generative Models Know What They Don't Know? Balaji Lakshminarayanan, Dustin Tran, Jasper Snoek
uncertainty, and tend to produce onfident predictions. Overconfident incorrect prédictions can be N P - . :
harmful or offensive [3], hence proper uncertainty quantification is crucial for practical applications, E Nalisnick, A Matsuk h, D Gorur, B Lakshminarayanan

. etz ICLR 2019

ed b\ practical applications of NNs. Firstl
frequentist notion of unceriainty which measures the dmnpam between subjective forecasts and
(empirical) long-run frequencies. The quality of calibration can be measured by proper scoring rules D Hendi
[17] such as log predictive probabilities and the Brier score [9]. Note that calibration is an orthogonal ICLR
concem Lo accuracy: a network’s predictions may be accurate and yet miscalibrated, and vice versa.

The second notion of quality of predictive uncertainty we consider concerns generalization of the

predictive uncertainty to domin shift (also referred 10 as out-of-distribution examples [23]), that s, Lea ming in Implicit Generative Models
measuring if the network knows what it k. For example, if a network trained on one dataset is
evalualed on a completely different datasel, then the network should output high predictive unceriainty
as inputs from a different dataset would be far away from the training data. Well-calibrated predictions
that are robust to model misspecification and dataset shift have a number of important practical uses

(e.g., weather forec: g, medical diagnosis).
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Abstract
Deep neural networks (NNs) are powerful black box predictors that have recently Simple and scalable predictive uncertainty estimation using deep ensembles 2257 2017
impres: performance on a wide spectrum of tasks. Quantifying B Lakshminarayanan, A Pritzel C Blun
uncertainty in NN is 2 challenging and yet unsolved problem. Bay e ; P

Advances in Neural Information Pr

which leam a distribution ove
imating predictive uncertainty; ho

s, are currently the stat

for  these require significant modifica-

tions to the training procedure and are computationally expe ompared 1o

standard (non-Bayesian) NNs. We propose an aliernative (o Bayesian NNs that Clinically applicable deep learning for diagnosis and referral in retinal disease 1283 2018 .

is simple to implement. readily parallelizable, requires very little hyperparameter JDeFa JR Ledsam, B Romera-Paredes, 5 Nikolov, N Tomasey, eur utorla S
tuning, and yields high quality predictive uncertainty estimates. Through a series Nature

of experiments on cl
our method produce
better than approxis

tion and regression benchmarks, we demonstrate that
calibrated uncertainty estimates which are as good or

an NNs. To assess robustness (o dataset shift, we Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Un

evaluate the predictive uncertainty on test examples from known and unknown

distributions, and show that our method is able 1o express higher uncertainty on Shift
out-of-distribution examples. We demonsirate the scalability of our method by

evaluating predictive uncertainty estimates on ImageNet.

1 Introduction 5 for Probabilistic Modeling and Inference U t 1 t 1 D L 1
E Nalisnick, DJ Rezende, 5 Mohamed, . ncertainty In beep Learning

Dep neural networks (NNs) have achieved staie- .
learning tasks [35] and are hecoming increasingly popular in domains such as computer .
[32], speech recognilion [25), natural language processing [42], and bioinformatics [2, 611, - x s
impressive accuracies in supervised learting benchmarks, NNs are poor al quantifying Do Deep Generative Models Know What They Don't Know? Balaji Lakshminarayanan, Dustin Tran, Jasper Snoek
uncertainty, and tend to produce overconfident predictions. Overconfident incorrect predictions can be N P - ; :
harmful or offensive [3], hence proper uncertainty quantification is crucial for practical applications, E Nalisnick, A Matsuk YW Teh, D Gorur, B Lakshminarayanan

. ICLR 2019 5

of-the-ant performance on a wide variety of maching

Evaluating the quality of predictive uncertainties is challenging as the “ground truth’ uncertainty
estimates are usually not available. In this work,
are motivaed by practical applications of NNs we shall examine calibration [12. 13]. 2 AugMix: A Simple Data Processing Method to Improve Robustness and Uncert
frequentist notion of unceriainty which measures the discrepancy between subjective forecasts and . < b o -

(empirical) long-run frequencies. The quality of calibration can be measured by proper scoring rules D Hend s, N Mu, ED Cubuk, B Zoph, J Gilmer, B Lakshminara
[17] such as log predictive probabilities and the Brier score [9]. Note that calibration is an orthogonal ICLR 2020

concem to accuracy: a network’s predictions may be accurate and yet miscalibrated, and vice versa.

The second notion of quality of predictive uncertainty we consider concerns generalization of the X i

predictive uncertainty to domain shift (also referred 1o as our-of distribution examples [23]), that s, Learning in Implicit Generative Models

measuring if the network knews what it knows. For example, if a network trained on one dataset is hamed, B Lakshmi ayanan

evaluated ona completely different datasel, then the network should output high predictive uncertainty - yena

as inputs from a different dataset would be far away from the training data. Well-calibrated predictions 3
that are robust to mode] misspecification and dataset shift have a number of important practical uses

(e.g., weather forecasting, medical diagnosis).

shall focus upon two

)
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Aleatoric heteroscedastic uncertainty?t & G2 240l CHSHAM =
loss(residual S %A B

% Proper scoring rules

- . * Uncertainty regularization
« DHEO|BE 7|FEO 2 scoring rules EE

= 2= Meatoric uncertainty?} 2 GlOJE{0] Chs} S3¥8] HX|= 242 Hit

2AHH Ol Joss function (cross entropy, Brier score) scoring rule TH=
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% Deep Ensemble Training Procedure
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Algorithm 1 Pseudocode of the training procedure for our method

. > Ler each neural network parametrize a distribution over the outputs, i.e. pg(y|x). Use a proper

scoring rule as the training criterion (0. x,y). Recommended default values are M = 5 and

€ = 1% of the input range of the muespondrnq dimension (e.g 2.55 if input range is [0,255]).

Initialize #1,6s. . ... 60y randomly

for mm =1: M do > train networks independently in parallel
Sample data point 7, randomly for each net > single n,, for clarity, minibatch in practice
Generate adversarial example using X’nm =Xy, +€ sign(vxnm (O Xn, s Yn,, ))
Minimize (0. Xn,, - Un,, ) + COm. X5 Un,, ) WLL O > adversarial training (optional)

Loss function, HIEI3 74 M, adversarial training ratio € ‘32|

Z} HES|=o| mi2jo[H 7|t

MZH2| HES|Z0] Chisl Bt= o (SEHESZ HBXNE| 7+5)

4. TN H|o|e Mol 2t HERAS st=A|7[7] fIeh mini-batch H[O[EH A 7155
5. SN mini-batchOll CHSH adversarial example 2i435}H0] Gj|O|E B2 (optional)

6. Score rule?! loss= Z[A%} St S HER|IA Ti2[0[H Sk

Deep ensembles
Adversanal training

Score rule
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entropy values
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Out-of-distribution
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- GP-based Approach

Spectral-normalized Neural Gaussian Process

% Gaussian ProcessE 18O & J1=617| ot M2
e

+ GP= ==d EE=E HESHK| T, ALEO| O A2 = Kefo] Rlom gt

=

_I
= O
«  GPlayerE &3] 2l HE|"EIt FXIE| =5 XRFAE HES

® (lass 2
® Out-of-distribution

10 -10
A 0 1 H 2 1 ° 1 1 3 " 2 3 o 1 3

Deep Ensemble MC dropout Gaussian Process DNN-GP  SNGP(proposed)
Distance - aware
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- GP-based Approach

Spectral-normalized Neural Gaussian Process

ID

& ‘He| "Bl XL =5 XHASLAE TG0 Gaussian process layer X8
- GP= S22 RS HESHK| T, HAE0| i@ 22 2 20| el B o 2= XS4 40| Yo &8

Sfe)
. GPlayerS E8317| S8l A HEI SX|E|E 2 KYBAE MES| 38t 20| 52

DNN X — Hidden Layer h ( x) Dense Layer y
- p
v ) 4

Spectral Normalized

: Gaussian Process
SNGP X — Hidden Layer — h(x) — y
h p
(1) Distance-preserving Hidden Mapping (2) Distance-aware Output Layer
via Spectral Normalization via Laplace-approximated Neural Gaussian Process
..:.. giglw'th;i/r\w;:]gly’rics https://www.tensorflow.org/tutorials/understanding/sngp




- GP-based Approach

Spectral-normalized Neural Gaussian Process

< 'He|JEI7l SXIE| =8 XYL E 8610 Gaussian process layer M-8
. GPL 2HAIAM KMars|yF MASHK| O CIALZEO| DS S0 2 K|Qk0| 9O QHIM O B kFQIZEA ZH0| Q20| 2e

= O
*  GPlayerS &M | R0l MHEE L7t 7AIE =S AASAE HES| Aot 40| S8

Algorithm 1 SNGP Training Algorithm 2 SNGP Prediction
1 B

Input: 1: Input: Testing example x.

TensorFlow > Leam > TensorFlow Core > Tutorials Was this helpful? 15 G0

— ' M o g . . .
Minibatches {D; ]':—1 for D; = {Ym, Xm}yy—1- 2: Compute Feature: Uncertainty-aware Deep Learning with SNGP
2: Initialize: ®p, «1 = \/2/Dp *cos(Wrh(x) +by),
iid iid i O RuninGoogle Colab o View on GitHub ¥ Download notebook
L=LW,~N(0,1),b, ~U(0,27) 3: Compute Posterior Mean:
I . (bT .\n Al applications that are safety-critical (e.g., medi.cal d.ecis.ion making and autonomous driving) or where .the.dala is
for train_step = 1 to max_step do ogity(x) =" B, incenaiy. 1o o ostir vt ve sl o b e of s v o nd he s hand contel cer 0

the human experts. This tutorial shows how to improve a deep classifier's ability in quantifying uncertainty using a

. SGD upda[c {ﬁ 3 {‘R’FJI f=_|1 ' {b!‘ }:,L=_1I } 4: Compule POSlCl‘lOI‘ VarlanCCI technique called Spectral-normalized Neural Gaussian Process (SNGP)

. . -1 _N ¢T i ¢ The core idea of SNGP is to improve a deep classifier's distance awareness by applying simple modifications to the
S pec t[al N Dmal] Latlﬂn { w! } F__l ( 1 0) . varl\ (x) - k . network. A model's distance awareness is ameasure of how its predictive probability reflects the distance between the
.f f I h th - test example and the training data. This is a desirable property that is common for gold-standard probablistic models
I Tinal_epoc €n

3
4
5
6
. el
7: Update precision matrix {X, }X_, (9).
8<
9
0

(e.g., the Gaussian process with RBF kernels) but is lacking in models with deep neural networks. SNGP provides a

5 5 Compute Pl‘CdlCllVC DlSlI‘l butlon: simple way to inject this Gaussian-process behavior into a deep classifier while maintaining its predictive accuracy.
This tutorial implements a deep residual network (ResNet)-based SNGP model on the two moons dataset, and compares
P P p:
E'Ild if 1) ( y l x) = Softm ax (In) its uncertainty surface with that of two other popular uncertainty approaches - Monte Carlo dropout and Deep
m~N(logit(x),var(x)) ensemble)

end for |
: Compute posterior covariance X; = inv(¥, ).

This tutorial illustrates the SNGP model on a toy 2D dataset. For an example of applying SNGP to a real-world natural
language understanding task using BERT-base, please see the SNGP-BERT tutorial. For high-quality implementations of
SNGP model (and many other uncertainty methods) on a wide variety of benchmark datasets (e.g., CIFAR-100, ImageNet,
Jigsaw toxicity detection, etc), please check out the Uncertainty Baselines benchmark.

Q.. Data Mining https://www.tensorflow.org/tutorials/understanding/sngp
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Additional Output  Ensemble Multi-pass
Methods Regularization Layer  Training  Inference
Deterministic | - Dense - -
G P- ba Sed A roa C h MC Dropout Dropout Dense - Yes
Deep Ensemble - Dense Yes Yes
H H MCD-GP D t GP - Yes
Spectral-normalized Neural Gaussian Process Results DUQ | Gradieni Penalty RBE - -
DNN-SN Spec Norm Dense - -
DNN-GP - GP - -
TS ° o SNGP Spec Norm GP - -
< CIFAR-100f| Wide ResNetTZ / CLINC OOS(intent)0fl BERTT-Z
IL = (@) == Paye) — >0
*  Accuracy, ECE, NLL X|Z0{[A 7[Z0]| SOTAZ &= 2! Deep Ensembles@t AR =F2| d5 EF
= . . . o -4 (. O AL -— O = [ o| — -
« 59|, Outof-distibution= EA|5t= ‘d50| 71 S5t 2, AL 28/d(latency) SO A= SOTACHH| 2S5 714
Vision task Accuracy (T) ECE () NLL () 00D AUPR (1) Latency ()
Method Clean Corrupted | Clean Corrupted | Clean Corrupted | SVHN CIFAR-100 | (ms/example)
Deterministic 96.0+£0.01 729 +0.01 | 0.023 £ 0.002 0.153 £ 0.011 | 0.158 £ 0.01 1.059 £ 0.02 | 0.781 £0.01 0.835+0.01 | 39
MC Dropout 96.0+0.01 700002 | 0021 £0.002 0.116 £0.009 | 0.173 £ 0.01 1.152 £ 0.01 | 0.971 £0.01 0.832 + 0.01 27.10
Deep Ensembles  96.6 = 0.01 779 £+ 0.01 | 0.010 + 0.001 0.087 + 0.004 | 0.114 + 0.01 0.815 £ 0.01 | 0.964 + 0.01 0.888 + 0.01 38.10
MCD-GP 9554002 700001 | 0.024 £0.004 0.100 £0.007 | 0.172 £ 0.01 1.157 £0.01 | 0.960 £ 0.01 0.863 £ 0.01 29.53
DuUQ 9474002 716002 | 0034 £0.002 0.183+0.011 | 02394002 1348001 | 0973 £001 0.854+0.01 8.68
DNN-SN 96.0+0.01 725+001 | 0.025 £0.004 0.178 +£0.013 | 0.171 £0.01 1.306 £0.01 | 0.974 £ 0.01 0.859 + 0.01 5.20
DNN-GP 9594001 717001 | 0.029 £0.002 0.175+0.008 | 0.221 £0.02 1.380+£0.01 | 0.976 £ 0.01 0.887 £ 0.01 5.58
SNGP (Ours) 959+ 0.01 746+0.01 | 0.018 +0.001 0.090+£0.012 | 0.138 +0.01 0.935 £ 0.01 | 0.990 +0.01 0.905 + 0.01 6.25
NLP t k Accuracy (1) ECE (]) NLL () 00D Latency (J)
as Method | | AUROC (1) AUPR (T) | (ms / example)
Deterministic 96.5 = 0.11 | 0.024 £+ 0.002 | 3559+ 0.11 | 0.897 £0.01 0.757 £0.02 | 10.42
MC Dropout 96.1 = 0.10 | 0.021 £ 0.001 | 1.658 £ 0.05 | 0.938 £ 0.01 0.799 £ 0.01 85.62
Deep Ensemble  97.5 +0.03 | 0.013 £ 0.002 | 1.062 £ 0.02 | 0.964 + 0.01 0.862 + 0.01 84.46
MCD-GP 95.9+0.05 | 0.015£0.003 | 1.664 = 0.04 | 0.906 £ 0.02 0.803 £0.01 88.38
DUQ 96.0 £ 0.04 | 0.059 +0.002 | 4015+ 0.08 | 0917+ 0.01 0.806 £ 0.01 15.60
DNN-SN 954 +0.10 | 0.037 £0.004 | 3565+ 0.03 | 0922 £0.02 0.733 £0.01 17.36
DNN-GP 95.9+0.07 | 0.075£0.003 | 3594 +0.02 | 0941 £ 001 0831 £0.01 18.93
SNGP 96.6 £0.05 | 0.014 +£0.005 | 1.218 +0.03 | 0.969 + 0.01 0.880 + 0.01 17.36
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- Conclusions

Bayesian-based Approach Ensemble-based Approach GP-based Approach
Uncertainty Quantification in Deep Learning e T e
MC-Dropout- D:‘ps;:::b'e ~ sNep
< CHEZ Q! uncertainty quantification™' =0]| CHoll HHE N, £ TfF -~ sesorvmcen

< Zt Ze0tCh H1F0] &= XA S Bo] 2R E S, Ofdlish=r| 24X 2 MAx|o{of &

< Z|4 uncertainty 87 S22 uncertainty 78 ME2} ELH= ‘Robustness’, ‘Calibration’, ‘Out-of-Distribution’

it €2 7|1HEL} AAE|0] 8|0 ASF I ZFES E B2lSHRD

< Z|Z benchmark0|| Lt Z2EZS F|SI1X} Sh= A7t AUS

< &2 CHAUTt applicationd|M H& 7sd Zd0|2t 7|ch

« Explainable Al, Medical imaging, Autonomous vehicle, Active learning, Out-of-distribution detection

Data Mini . . . ] -
.‘:‘. Q?JE}”W I/r\wr‘:]%yﬂcs Van Engelen, J. E, & Hoos, H. H. (2020). A survey on semi-supervised leaming. Machine Leaming, 109(2), 373-440.



Il Materials

Tutorials

% https://neurips.cc/media/neurips-2020/Slides/16649.pdf
% https://slideslive.com/38935801/practical-uncertainty-estimation-outofdistribution-robustness-in-deep-learning

% https://www.youtube.com/watch?v=ssD7jNDIL2c

‘i.:TE‘{:;'."‘.
2. NEURAL INFORMATION

Practical Uncertainty Estimation &
Out-of-Distribution Robustness in

Practical Uncel  “ty Estimation & Deep Learning
Out-of-Distribution Ru s in Deep Learning c 0

Dustin Tran, Jasper S ., Balaji Lakshminarayanan - = .
. ) / Dustin Tran, Jasper Snoek, Balaji Lakshminarayanan

Practical Uncertainty Estimation & Out-of-Distribution Robustness in Deep Learning
Dustin Tran Jasper Snoek Balaji Lakshminarayanan - Dec 6, 2020 - 7,00 ws - NeurlPS 2020
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https://www.youtube.com/watch?v=ssD7jNDIL2c

Il Materials

Github

< https://github.com/google/uncertainty-baselines Smoothness assumption

[ google / uncertainty-baselines ' public

<> Code O Issues 38 i1 Pull requests 18 @ Actions ﬂa Prajects 0 wiki © Security |~ Insights
¥ main ~ ¥ 99 branches 0 tags Go to file Add file = m
e dustinvtran and Copybara-Service Import ml_collections.config_flags explicitly to ... ..+ codeade 2 hoursago ¥%) 598 commits
BB github/workflows Fixes JFT utility module imports externally. 3 months ago
[0 baselines Import ml_collections.config_flags explicitly to fix GitHub test. 2 hours ago
[ experimental Add evaluation for Cifar10H, Imagenet_real & OOD metrics for BatchEns... 8 days ago
B uncertainty_baselines Clean up internal logic to streamline external-only code. 2 hours ago
[ .gitignore Praject import generated by Copybara. 2 years ago
[ CONTRIBUTING.md Project import generated by Copybara. 2 years ago
[ LICENSE Merge pull request #344 from twistedcubic:fixBfloatFlag 9 months ago
[y README.md Refactor AL script 3 days ago
™ pylintrc Updates the pylint line length to match our internal style. 2 months ago
O setup.py Squashed commit of the following: 3 days ago

Q.. Daota Mining
ob Quallity Anailytics




Jl References

% Bayesian Neural Nets
*  https/Awwedwithorg/bayesiandeepleaming
*  httpy/dmagakoreaackr/actvity/seminar/252
*  https/Awwislidesharenet/rsiveira79/uncertainty-in-deep-leaming
*  httpsy/alexgkendallcomycomputer. vision/bayesian_deep leaming_forsafe ai/
*  https/getpodetcomy/redirect?un=http%3A%2F%2Fmig.eng.camacukde2Ryarin%2Fblog 3d801aa532¢c1cehtml
*  httpsy/towardsdatasaencecomybuilding-a-bayesian-deep-leaming-dassifier-ece1845bc09

++ Vanational Inference
*  httpy/dmagakoreaacki/activity/seminar/253
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Jll Introduction

Uncertainty

% Bayesian Neural Networks
« http://mlg.eng.cam.ac.uk/varin/blog 3d8071aa532c¢1ce.html
« Parameter w 0| 2 7510, |54/ YEN7| 222 61| 20| 2| YEfZE =5 = /US

. O], 0iZ 22| 24t ~ Confidence Interval ~ Uncertainty

A average loss: 0.14024768120239292

- Point; train data points
YVtest ! ! po!

Black line: Y0

Xtrain) Ytrain Blue line: E(9;e5), Blue shade: Var(¥;esr)

Jncertainty

Xtest 1 | Xtest
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Jll Introduction

Uncertainty

% Bayesian Neural Networks
« http://mlg.eng.cam.ac.uk/varin/blog 3d8071aa532c¢1ce.html
« Parameter w 0| 2 7510, |54/ YEN7| 222 61| 20| 2| YEfZE =5 = /US

. O], 0iZ 22| 24t ~ Confidence Interval ~ Uncertainty

1 average loss: 0.1156229325552646 . . .
Droct ’ Point: train data points
es

Black line: $;est

Xtrain» Ytrain Blue line: E(9;e5), Blue shade: Var(¥;esr)

Uncertainty

Xtest
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Jll How do we measure?
Quality of uncertainty

% Confidence scoreE Ho|6l= AH0j|A| &L= X|HE &E
% Calibration: 22| 0| ZE(confidence)0| M| HE T (accuracy)E L0} YHE =X
«  Perfect calibration: 222| 0= 2FZ(confidence) = “E=t = (acauracy)

. 0]0j| CHet HEkst X|EE expected calibration error (ECE) 7+ CHEZ]

Uneal. - CIFAR-100 Temp. Scale - CIFAR-100 Hist. Bin. - CIFAR-100 Iso. Reg. - CIFAR-100
o ResNet-110 (SD) ResNet-110 (SD) ResNet-110 (SD) ResNet-110 (SD)
| B COutputs ; E Outputs El Outputs E Outputs 3
0.8 =L = Gap ~ 1 Gap A
& 0.6
B
3
g 0.4
0.2 P
ECE=12.67
(.0
00 02 04 06 058 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
Confidence
Figure 4. Reliability diagrams for CIFAR-100 betore (far left) and after calibration {middle left, middle night, far nnght).
Q.. Data Mining Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017, July). On calibration of modern neural networks. In International Conference on
e®® Quality Analytics Machine Learning (pp. 1321-1330). PMLR.




- How do we measure?
Quality of uncertainty

% Calibration: 22| 0{|= 2E(confidence)0| M| HEHE (accuracy)E HOIL} HHE =X

<% ECE= Z’,f=1% |acc(b) — conf(b)]

« Z binOtC} calibration errorg BHESIHH, O]l H2HE=2t= XO0|7t /S

Bin 1 Model Prediction | 03 | 03 | 03 | 03 | 03 | 03 | 03 | 03 | 03 | 03 | Accuracy | Calibration
True Label 0 0 0 0 0 0 0 1 1 1 Bad (70%) perfect

Bin 2 Model Prediction | 06 | 06 | 06 | 06 | 06 | 06 | 06 | 06 | 06 | 06 | Accuracy | Calibration

True Label 0 0 0 1 1 0 1 1 1 1 Bad (60%) perfect
Q.. Data Mining Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017, July). On calibration of modern neural networks. In International Conference on -
e®® Quality Analytics Machine Learning (pp. 1321-1330). PMLR.




